Updates on Nuclear Energy

Who has it and who wants it.

Saturday, April 30, 2011

The Answer is with ITER

As I mentioned in my last blog post, the problem with fusion reactors (and therefore the reason they are not commercially used) is that you must put more energy into the fusion process than there is energy that you get out. Until this critical problem is solved, all nuclear plants will remain fission reactors.

Many of you have probably heard of ITER, the International Thermonuclear Experimental Reactor. ITER was designed to end fusion's "less energy out" problem. Idealized in 1985, at the Geneva Summit, ITER was a project aimed at using fusion energy for peaceful purposes. By the end 2005, the USA, Russia, the European Union, Japan, South Korea, and India had all signed up (today also includes China). Site preparation for ITER began in 2007 in Cadarache, France.

So what exactly is ITER? Once completed, ITER will be the world's largest tokamak (Russian word for the "doughnut" shape) nuclear fusion reactor. Tokamak refers to the shape of the actual reactor which can be seen below. The tokamak shape is necessary for aiding the shape of the magnetic fields needed in the reactor.
JET, located in the UK notice "doughnut" shape.

The reactor hopes to achieve an output of about 500 MW with an input of only 50 MW. Therefore solving the fusion problem. One of the most difficult requirements of a fusion reactor is the high temperature, up to 150 million degrees Celsius. ITER uses several engineering feats in order to achieve such a temperature however, due to its complexity the details of ITER's design will not be discussed, but do not fret HERE is a cool link that will let you explore all of the different parts of the reactor. The ITER's tokamak hopes to be completed by 2018.

ITER is important in many ways. If ITER could prove successful... and we could finally be productive in the fusion process...the Earth's energy problems would be forever solved (oh wow big statement). No more radioactive by-products as with fission reactors!

1 comment:

  1. The last comment is a big of a large ask really, it does have radiation waste associated, albeit much much less than the Fission reactors.

    ReplyDelete